Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.265
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612589

RESUMO

Lung cancer is the leading cause of cancer death worldwide. Polycyclic aromatic hydrocarbons (PAHs) are metabolized by the cytochrome P450 (CYP)1A and 1B1 to DNA-reactive metabolites, which could lead to mutations in critical genes, eventually resulting in cancer. Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial against cancers. In this investigation, we elucidated the mechanisms by which omega-3 fatty acids EPA and DHA will attenuate PAH-DNA adducts and lung carcinogenesis and tumorigenesis mediated by the PAHs BP and MC. Adult wild-type (WT) (A/J) mice, Cyp1a1-null, Cyp1a2-null, or Cyp1b1-null mice were exposed to PAHs benzo[a]pyrene (BP) or 3-methylcholanthrene (MC), and the effects of omega-3 fatty acid on PAH-mediated lung carcinogenesis and tumorigenesis were studied. The major findings were as follows: (i) omega-3 fatty acids significantly decreased PAH-DNA adducts in the lungs of each of the genotypes studied; (ii) decreases in PAH-DNA adduct levels by EPA/DHA was in part due to inhibition of CYP1B1; (iii) inhibition of soluble epoxide hydrolase (sEH) enhanced the EPA/DHA-mediated prevention of pulmonary carcinogenesis; and (iv) EPA/DHA attenuated PAH-mediated carcinogenesis in part by epigenetic mechanisms. Taken together, our results suggest that omega-3 fatty acids have the potential to be developed as cancer chemo-preventive agents in people.


Assuntos
Ácidos Graxos Ômega-3 , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Adulto , Camundongos , Animais , Ácidos Graxos Ômega-3/farmacologia , Adutos de DNA , Carcinogênese , Transformação Celular Neoplásica , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia
2.
Nutrients ; 16(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612996

RESUMO

Managing atherosclerotic cardiovascular disease (ASCVD) often involves a combination of lifestyle modifications and medications aiming to decrease the risk of cardiovascular outcomes, such as myocardial infarction and stroke. The aim of this article is to discuss possible omega-3 (n-3) fatty acid-statin interactions in the prevention and treatment of ASCVD and to provide evidence to consider for clinical practice, highlighting novel insights in this field. Statins and n-3 fatty acids (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) are commonly used to control cardiovascular risk factors in order to treat ASCVD. Statins are an important lipid-lowering therapy, primarily targeting low-density lipoprotein cholesterol (LDL-C) levels, while n-3 fatty acids address triglyceride (TG) concentrations. Both statins and n-3 fatty acids have pleiotropic actions which overlap, including improving endothelial function, modulation of inflammation, and stabilizing atherosclerotic plaques. Thus, both statins and n-3 fatty acids potentially mitigate the residual cardiovascular risk that remains beyond lipid lowering, such as persistent inflammation. EPA and DHA are both substrates for the synthesis of so-called specialized pro-resolving mediators (SPMs), a relatively recently recognized feature of their ability to combat inflammation. Interestingly, statins seem to have the ability to promote the production of some SPMs, suggesting a largely unrecognized interaction between statins and n-3 fatty acids with relevance to the control of inflammation. Although n-3 fatty acids are the major substrates for the production of SPMs, these signaling molecules may have additional therapeutic benefits beyond those provided by the precursor n-3 fatty acids themselves. In this article, we discuss the accumulating evidence that supports SPMs as a novel therapeutic tool and the possible statin-n-3 fatty acid interactions relevant to the prevention and treatment of ASCVD.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Ácidos Graxos Ômega-3 , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/uso terapêutico , Ácidos Graxos , Inflamação
3.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474148

RESUMO

Pain is an unpleasant sensory and emotional experience accompanied by tissue injury. Often, an individual's experience can be influenced by different physiological, psychological, and social factors. Fibromyalgia, one of the most difficult-to-treat types of pain, is characterized by general muscle pain accompanied by obesity, fatigue, sleep, and memory and psychological concerns. Fibromyalgia increases nociceptive sensations via central sensitization in the brain and spinal cord level. We used intermittent cold stress to create a mouse fibromyalgia pain model via a von Frey test (day 0: 3.69 ± 0.14 g; day 5: 2.13 ± 0.12 g). Mechanical pain could be reversed by eicosapentaenoic acid (EPA) administration (day 0: 3.72 ± 0.14 g; day 5: 3.69 ± 0.13 g). A similar trend could also be observed for thermal hyperalgesia. The levels of elements in the transient receptor potential V1 (TRPV1) signaling pathway were increased in the ascending pain pathway, including the thalamus, medial prefrontal cortex, somatosensory cortex, anterior cingulate cortex, and cerebellum. EPA intake significantly attenuated this overexpression. A novel chemogenetics method was used to inhibit SSC and ACC activities, which presented an analgesic effect through the TRPV1 downstream pathway. The present results provide insights into the role of the TRPV1 signaling pathway for fibromyalgia and its potential as a clinical target.


Assuntos
Fibromialgia , Animais , Camundongos , Encéfalo , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/uso terapêutico , Fibromialgia/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Dor
4.
Front Endocrinol (Lausanne) ; 15: 1368853, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501107

RESUMO

Background: Monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) have been reported to combat saturated fatty acid (SFA)-induced cellular damage, however, their clinical effects on patients with metabolic diseases such as diabetes and hyperlipidemia are still controversial. Since comparative studies of the effects of these two types of unsaturated fatty acids (UFAs) are still limited. In this study, we aimed to compare the protective effects of various UFAs on pancreatic islets under the stress of SFA-induced metabolic disorder and lipotoxicity. Methods: Rat insulinoma cell line INS-1E were treated with palmitic acid (PA) with or without UFAs including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), arachidonic acid (AA), and oleic acid (OA) to determine cell viability, apoptosis, endoplasmic reticulum (ER) stress, and inflammatory. In vivo, male C57BL/6 mice were fed a 60% high-fat diet (HFD) for 12 w. Then the lard in HFD was partially replaced with fish oil (FO) and olive oil (OO) at low or high proportions of energy (5% or 20%) to observe the ameliorative effects of the UFA supplement. Results: All UFAs significantly improved PA-induced cell viability impairment in INS-1E cells, and their alleviation on PA induced apoptosis, ER stress and inflammation were confirmed. Particularly, OA had better effects than EPA, DHA, and AA on attenuating cellular ER stress. In vivo, the diets with a low proportion of UFAs (5% of energy) had limited effects on HFD induced metabolic disorder, except for a slight improved intraperitoneal glucose tolerance in obese mice. However, when fed diets containing a high proportion of UFAs (20% of energy), both the FO and OO groups exhibited substantially improved glucose and lipid metabolism, such as decrease in total cholesterol (TC), low-density lipoprotein (LDL), fasting blood glucose (FBG), and fasting blood insulin (FBI)) and improvement of insulin sensitivity evidenced by intraperitoneal glucose tolerance test (IPGTT) and intraperitoneal insulin tolerance test (IPITT). Unexpectedly, FO resulted in abnormal elevation of the liver function index aspartate aminotransferase (AST) in serum. Pathologically, OO attenuated HFD-induced compensatory hyperplasia of pancreatic islets, while this effect was not obvious in the FO group. Conclusions: Both MUFAs and PUFAs can effectively protect islet ß cells from SFA-induced cellular lipotoxicity. In particular, both OA in vitro and OO in vivo showed superior activities on protecting islets function and enhance insulin sensitivity, suggesting that MUFAs might have greater potential for nutritional intervention on diabetes.


Assuntos
Diabetes Mellitus , Resistência à Insulina , Insulinas , Humanos , Ratos , Camundongos , Animais , Masculino , Ácidos Graxos Monoinsaturados , Camundongos Endogâmicos C57BL , Ácidos Graxos Insaturados/farmacologia , Ácidos Graxos , Ácido Palmítico , Ácido Eicosapentaenoico/farmacologia , Glucose
5.
Mol Nutr Food Res ; 68(7): e2300616, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430210

RESUMO

SCOPE: Endocannabinoid signaling regulates energy homeostasis, and is tightly associated with nonalcoholic fatty liver disease (NAFLD). The study previously finds that supplementation of docosahexaenoic acid (DHA) has superior function to ameliorate NAFLD compared with eicosapentaenoic acid (EPA), however, the underlying mechanism remains elusive. The present study aims to investigate whether DHA intervention alleviates NAFLD via endocannabinoid system. METHODS AND RESULTS: In a case-control study, the serum endocannabinoid ligands in 60 NAFLD and 60 healthy subjects are measured. Meanwhile, NAFLD model is established in mice fed a high-fat and -cholesterol diet (HFD) for 9 weeks. DHA or EPA is administrated for additional 9 weeks. Serum primary endocannabinoid ligands, namely anandamide (AEA) and 2-arachidoniylglycerol (2-AG), are significantly higher in individuals with NAFLD compared with healthy controls. NAFLD model shows that serum 2-AG concentrations and adipocyte cannabinoid receptor 1 expression levels are significantly lower in DHA group compared with HFD group. Lipidomic and targeted ceramide analyses further confirm that endocannabinoid signaling inhibition has exerted deletion of hepatic C16:0-ceramide contents, resulting in down-regulation of de novo fatty acid synthesis and up-regulation of fatty acid ß-oxidation related protein expression levels. CONCLUSIONS: This work elucidates that DHA has improved NAFLD by suppressing endocannabinoid system.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Endocanabinoides/metabolismo , Estudos de Casos e Controles , Fígado/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ceramidas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
6.
Physiol Res ; 73(1): 57-68, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466005

RESUMO

This study investigated the effect of eicosapentaenoic acid (EPA) on insulin resistance in pregnant mice with gestational diabetes mellitus (GDM) and underlying mechanism. C57BL/6 mice fed with a high-fat diet for 4 weeks and the newly gestated were selected and injected with streptozotocin for GDM modeling. We demonstrated that the fasting insulin levels (FINS) and insulin sensitivity index (ISI) in serum and blood glucose level were significantly higher in GDM group than in normal control (NC) group. The low or high dose of EPA intervention reduced these levels, and the effect of high dose intervention was more significant. The area under the curve in GDM group was higher than that of NC group, and then gradually decreased after low or high dose of EPA treatment. The serum levels of TC, TG and LDL were increased in GDM group, while decreased in EPA group. GDM induced down-regulation of HDL level, and the low or high dose of EPA gradually increased this level. The levels of p-AKT2Ser, p-IRS-1Tyr, GLUT4, and ratios of pIRS-1Tyr/IRS-1 and pAKT2Ser/AKT2 in gastrocnemius muscle were reduced in GDM group, while low or high dose of EPA progressively increased these alterations. GDM enhanced TLR4, NF-kappaB p65, IL-1beta, IL-6 and TNF-alpha levels in placental tissues, and these expressions were declined at different dose of EPA, and the decrease was greater at high dose. We concluded that EPA receded the release of inflammatory factors in the placental tissues by inhibiting the activation of TLR4 signaling, thereby alleviating the IR.


Assuntos
Diabetes Gestacional , Resistência à Insulina , Humanos , Gravidez , Feminino , Camundongos , Animais , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Placenta/metabolismo , Camundongos Endogâmicos C57BL , Insulina/farmacologia , Glicemia/metabolismo
7.
Methods Mol Biol ; 2761: 209-229, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427239

RESUMO

Omega-3 fatty acids play a seminal role in maintaining the structural and functional integrity of the nervous system. These specialized molecules function as precursors for many lipid-based biological messengers. Also, studies suggest the role of these fatty acids in regulating healthy sleep cycles, cognitive ability, brain development, etc. Dietary intake of essential poly unsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are foundational to the optimal working of the nervous system. Besides regulating health, these biomolecules have great therapeutic value in treating several diseases, particularly nervous system diseases and disorders. Many recent studies conclusively demonstrated the beneficial effects of Omega-3 fatty acids in treating depression, neuropsychiatric disorders, neurodegenerative disorders, neurochemical disorders, and many other illnesses associated with the nervous system. This chapter summates the multifaceted role of poly unsaturated fatty acids, especially Omega-3 fatty acids (EPA and DHA), in the neuronal health and functioning. The importance of dietary intake of these essential fatty acids, their recommended dosages, bioavailability, the mechanism of their action, and therapeutic values are extensively discussed.


Assuntos
Ácidos Graxos Ômega-3 , Ácidos Graxos Ômega-3/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Graxos Insaturados , Ácidos Graxos , Encéfalo
8.
BMC Med ; 22(1): 109, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38468309

RESUMO

BACKGROUND: Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been suggested as a cognitive enhancing agent, though their effect is doubtful. We aimed to examine the effect of n-3 PUFA on the cognitive function of middle-aged or older adults without dementia. METHODS: We reviewed randomized controlled trials of individuals aged 40 years or older. We systematically searched PubMed/MEDLINE, EMBASE, CINAHL, PsycINFO, and Cochrane Library databases. We used the restricted cubic splines model for non-linear dose-response meta-analysis in terms of the standardized mean difference with 95% confidence intervals. RESULTS: The current meta-analysis on 24 studies (n 9660; follow-up 3 to 36 months) found that the beneficial effect on executive function demonstrates an upward trend within the initial 12 months of intervention. This effect is prominently observed with a daily intake surpassing 500 mg of n-3 PUFA and up to 420 mg of eicosapentaenoic acid (EPA). Furthermore, these trends exhibit heightened significance in regions where the levels of blood docosahexaenoic acid (DHA) + EPA are not very low. CONCLUSIONS: Supplementation of n-3 PUFA may confer potential benefits to executive function among the middle-aged and elderly demographic, particularly in individuals whose dietary DHA + EPA level is not substantially diminished.


Assuntos
Demência , Ácidos Graxos Ômega-3 , Idoso , Pessoa de Meia-Idade , Humanos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Cognição , Suplementos Nutricionais
9.
Biotechnol J ; 19(3): e2300612, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38472102

RESUMO

Schizochytrium sp. is a heterotrophic microorganism capable of accumulating polyunsaturated fatty acids and has achieved industrial production of docosahexaenoic acid (DHA). It also has the potential for eicosapentaenoic acid (EPA) production. In this study, it was found that the cell growth, lipid synthesis and fatty acid composition of Schizochytrium sp. were significantly affected by the level of cobalamin in the medium, especially with regard to the content of EPA in the fatty acids. The content of EPA in the fatty acids increased 17.91 times, reaching 12.00%, but cell growth and lipid synthesis were significantly inhibited under cobalamin deficiency. The response mechanism for this phenomenon was revealed through combined lipidomic and transcriptomic analysis. Although cell growth was inhibited under cobalamin deficiency, the genes encoding key enzymes in central carbon metabolism were still up-regulated to provide precursors (Acetyl-CoA) and reducing power (NADPH) for the synthesis and accumulation of fatty acids. Moreover, the main lipid subclasses observed during cobalamin deficiency were glycerolipids (including glycerophospholipids), with EPA primarily distributed in them. The genes involved in the biosynthesis of these lipid subclasses were significantly up-regulated, such as the key enzymes in the Kennedy pathway for the synthesis of triglycerides. Thus, this study provided insights into the specific response of Schizochytrium sp. to cobalamin deficiency and identified a subset of new genes that can be engineered for modification.


Assuntos
Ácido Eicosapentaenoico , Lipidômica , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos , Perfilação da Expressão Gênica , Vitamina B 12
10.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473995

RESUMO

Vascular endothelial growth factor (VEGF) induces monocyte chemoattractant protein-1 (MCP-1) and plays an important role in vascular inflammation and atherosclerosis. We investigated the mechanisms of VEGF-induced MCP-1 expression and the effects of eicosapentaenoic acid (EPA) in human umbilical vein endothelial cells (HUVECs). Real-time reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) demonstrated that VEGF enhanced MCP-1 gene expression and protein secretion in HUVECs. Western immunoblot analysis revealed that VEGF induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and inhibitor of nuclear factor (NF)-κB (IκB). Treatment with pharmacological inhibitors of p38 MAPK (SB203580) or NF-κB (BAY11-7085) significantly suppressed VEGF-induced MCP-1 in HUVECs. EPA inhibited VEGF-induced MCP-1 mRNA, protein secretion, phosphorylation of p38 MAPK, and the translocation of phospho-p65 to the nucleus. Additionally, VEGF also stimulated gene expressions of interleukin (IL)-6 and IL-8, which were suppressed by SB203580, BAY11-7085, and EPA. The present study has demonstrated that VEGF-induced activation of MCP-1, IL-6, and IL-8 involves the p38 MAPK and NF-κB signaling pathways and that EPA inhibits VEGF-induced MCP-1, IL-6, and IL-8 via suppressing these signaling pathways. This study supports EPA as a beneficial anti-inflammatory and anti-atherogenic drug to reduce the VEGF-induced activation of proinflammatory cytokine and chemokines.


Assuntos
Quimiocina CCL2 , Interleucina-6 , Humanos , Quimiocina CCL2/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ácido Eicosapentaenoico/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
J Nutr ; 154(4): 1271-1281, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367811

RESUMO

BACKGROUND: Myokines have a prominent effect on improving insulin resistance (IR) by inducing browning of white adipose tissue (WAT). Although docosahexaenoic acids (DHA) and eicosapentaenoic acids (EPA) play roles in improving IR and stimulating browning, whether they mediate myokines directly remains unknown. OBJECTIVE: This study aims to investigate the effects of DHA and EPA on browning-related myokines under IR and clarify the mechanism via Ca2+ signaling. METHODS: The expression and secretion levels of myokines in IR mice and IR myotubes were detected after DHA/EPA treatment. The crosstalk between myotubes and adipocytes was evaluated through a method in which IR adipocytes were treated with the culture medium supernatant of myotubes treated with DHA/EPA. The expression of browning markers in the WAT of IR mice and adipocytes was determined. A calcium chelator was used to determine whether DHA and EPA regulate myokine production through a calcium ion-dependent pathway. RESULTS: In vivo experiments: 3:1 and 1:3 DHA/EPA promoted the mRNA levels of Irisin, IL-6, IL-15, and FGF21 in skeletal muscle, stimulated WAT browning, reduced lipid accumulation; 3:1 DHA/EPA upregulated the serum concentration of Irisin; 1:3 DHA/EPA upregulated the serum concentrations of Irisin, IL-6, and FGF21. In vitro experiments: the levels of Irisin and IL-6 in C2C12 myotubes and their medium supernatant were significantly elevated in the 3:1 and 1:3 groups and the upregulation of browning markers and reduction in fat accumulation were observed in adipocytes treated with the medium supernatant of C2C12 myotubes in the 3:1 and 1:3 groups. However, the above phenomena disappeared when Ca2+ signaling was inhibited. CONCLUSIONS: Treatment with DHA and EPA at composition ratios of 3:1 and 1:3 induces browning of WAT in IR mice, which is likely related to the promotion of the accumulation of myokines, especially Irisin and IL-6, via Ca2+ signaling.


Assuntos
Resistência à Insulina , Insulina , Camundongos , Animais , Insulina/metabolismo , 60635 , Interleucina-6/genética , Interleucina-6/metabolismo , Ácido Eicosapentaenoico/farmacologia , Fibronectinas/metabolismo , Sinalização do Cálcio , Insulina Regular Humana , Ácidos Docosa-Hexaenoicos/farmacologia
12.
Crit Care ; 28(1): 38, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302945

RESUMO

The optimal feeding strategy for critically ill patients is still debated, but feeding must be adapted to individual patient needs. Critically ill patients are at risk of muscle catabolism, leading to loss of muscle mass and its consequent clinical impacts. Timing of introduction of feeding and protein targets have been explored in recent trials. These suggest that "moderate" protein provision (maximum 1.2 g/kg/day) is best during the initial stages of illness. Unresolved inflammation may be a key factor in driving muscle catabolism. The omega-3 (n-3) fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are substrates for synthesis of mediators termed specialized pro-resolving mediators or SPMs that actively resolve inflammation. There is evidence from other settings that high-dose oral EPA + DHA increases muscle protein synthesis, decreases muscle protein breakdown, and maintains muscle mass. SPMs may be responsible for some of these effects, especially upon muscle protein breakdown. Given these findings, provision of EPA and DHA as part of medical nutritional therapy in critically ill patients at risk of loss of muscle mass seems to be a strategy to prevent the persistence of inflammation and the related anabolic resistance and muscle loss.


Assuntos
Ácido Eicosapentaenoico , Ácidos Graxos Ômega-3 , Humanos , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/uso terapêutico , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Estado Terminal/terapia , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Inflamação/tratamento farmacológico , Músculo Esquelético , Proteínas Musculares
13.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339087

RESUMO

Osteoarthritis (OA) is the most prevalent form of arthritis and a major cause of pain and disability. The pathology of OA involves the whole joint in an inflammatory and degenerative process, especially in articular cartilage. OA may be divided into distinguishable phenotypes including one associated with the metabolic syndrome (MetS) of which dyslipidemia and hyperglycemia have been individually linked to OA. Since their combined role in OA pathogenesis remains to be elucidated, we investigated the chondrocyte response to these metabolic stresses, and determined whether a n-3 polyunsaturated fatty acid (PUFA), i.e., eicosapentaenoic acid (EPA), may preserve chondrocyte functions. Rat chondrocytes were cultured with palmitic acid (PA) and/or EPA in normal or high glucose conditions. The expression of genes encoding proteins found in cartilage matrix (type 2 collagen and aggrecan) or involved in degenerative (metalloproteinases, MMPs) or in inflammatory (cyclooxygenase-2, COX-2 and microsomal prostaglandin E synthase, mPGES) processes was analyzed by qPCR. Prostaglandin E2 (PGE2) release was also evaluated by an enzyme-linked immunosorbent assay. Our data indicated that PA dose-dependently up-regulated the mRNA expression of MMP-3 and -13. PA also induced the expression of COX-2 and mPGES and promoted the synthesis of PGE2. Glucose at high concentrations further increased the chondrocyte response to PA. Interestingly, EPA suppressed the inflammatory effects of PA and glucose, and strongly reduced MMP-13 expression. Among the free fatty acid receptors (FFARs), FFAR4 partly mediated the EPA effects and the activation of FFAR1 markedly reduced the inflammatory effects of PA in high glucose conditions. Our findings demonstrate that dyslipidemia associated with hyperglycemia may contribute to OA pathogenesis and explains why an excess of saturated fatty acids and a low level in n-3 PUFAs may disrupt cartilage homeostasis.


Assuntos
Cartilagem Articular , Dislipidemias , Hiperglicemia , Osteoartrite , Ratos , Animais , Condrócitos/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/metabolismo , Ciclo-Oxigenase 2/metabolismo , Palmitatos/metabolismo , Células Cultivadas , Osteoartrite/metabolismo , Cartilagem Articular/metabolismo , Dinoprostona/metabolismo , Hiperglicemia/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Dislipidemias/metabolismo
14.
J Nutr Biochem ; 127: 109603, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373507

RESUMO

Alzheimer's disease (AD) is a common neurodegenerative disease that causes progressive cognitive decline. A major pathological characteristic of AD brain is the presence of senile plaques composed of ß-amyloid (Aß), the accumulation of which induces toxic cascades leading to synaptic dysfunction, neuronal apoptosis, and eventually cognitive decline. Dietary n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial for patients with early-stage AD; however, the mechanisms are not completely understood. In this study, we investigated the effects of n-3 PUFAs on Aß-induced toxicity in a transgenic AD Caenorhabditis elegans (C. elegans) model. The results showed that EPA and DHA significantly inhibited Aß-induced paralytic phenotype and decreased the production of reactive oxygen species while reducing the levels of Aß in the AD worms. Further studies revealed that EPA and DHA might reduce the accumulation of Aß by restoring the activity of proteasome. Moreover, treating worms with peroxisome proliferator-activated receptor (PPAR)-γ inhibitor GW9662 prevented the inhibitory effects of n-3 PUFAs on Aß-induced paralytic phenotype and diminished the elevation of proteasomal activity by n-3 PUFAs, suggesting that PPARγ-mediated signals play important role in the protective effects of n-3 PUFAs against Aß-induced toxicity.


Assuntos
Doença de Alzheimer , Ácidos Graxos Ômega-3 , Doenças Neurodegenerativas , Animais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/farmacologia , PPAR gama/genética , Modelos Animais de Doenças
15.
Fish Physiol Biochem ; 50(2): 687-703, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38285408

RESUMO

Skeletal muscle is the mainly edible part of fish. Eicosapentaenoic acid (EPA) is a crucial nutrient for fish. This study investigated the effect of EPA on the muscle development of grass carp along with the potential molecular mechanisms in vivo and in vitro. Muscle cells treated with 50 µM EPA in vitro showed the elevated proliferation, and the expression of mammalian target of rapamycin (mTOR) signaling pathway-related genes was upregulated (P < 0.05). In vivo experiments, 270 grass carp (27.92 g) were fed with one of the three experimental diets for 56 days: control diet (CN), 0.3% EPA-supplement diet (EPA), and the diet supplemented with 0.3% EPA and 30 mg/kg rapamycin (EPA + Rap). Fish weight gain rate (WGR) was improved in EPA group (P < 0.05). There was no difference in the viscerosomatic index (VSI) and body height (BH) among all groups (P > 0.05), whereas the carcass ratio (CR) and body length in the EPA group were obviously higher than those of other groups (P < 0.05), indicating that the increase of WGR was due to muscle growth. In addition, both muscle fiber density and muscle crude protein also increased in EPA group (P < 0.05). The principal component analysis showed that total weight of muscle amino acid in EPA group ranked first. Dietary EPA also increased protein levels of the total mTOR, S6k1, Myhc, Myog, and Myod in muscle (P < 0.05). In conclusion, EPA promoted the muscle development and nutritive value via activating the mTOR signaling pathway.


Assuntos
Carpas , Ácido Eicosapentaenoico , Animais , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/análise , Carpas/metabolismo , Transdução de Sinais , Dieta , Músculo Esquelético/metabolismo , Proteínas na Dieta , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Desenvolvimento Muscular , Valor Nutritivo , Ração Animal/análise , Proteínas de Peixes/genética , Mamíferos/metabolismo
16.
J Diet Suppl ; 21(2): 135-153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37078491

RESUMO

Omega-3 polyunsaturated fatty acids (PUFAs) and vitamins exert multiple beneficial effects on host health, some of which may be mediated through the gut microbiome. We investigated the prebiotic potential of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and lipid-soluble phylloquinone (vitamin K1), each at 0.2x, 1x and 5x using the simulator of the human intestinal microbial ecosystem (SHIME®) to exclude in vivo systemic effects and host-microbe interactions.Microbial community composition and, diversity [shotgun metagenomic sequencing] and microbial activity [pH, gas pressure, and production of short-chain fatty acids (SCFAs)] were measured over a period of 48 h. Fermentations supernatants were used to investigate the effect on gut barrier integrity using a Caco-2/goblet cell co-culture model.We found that EPA, DHA and vitamin K1 increased alpha-diversity at 24 h when compared with control. Moreover, there was an effect on beta-diversity with changes in gut microbial composition, such as an increase in the Firmicutes/Bacteroidetes (F/B) ratio and a consistent increase in Veillonella and Dialister abundances with all treatments. DHA, EPA, and vitamin K1 also modulated metabolic activity of the gut microbiome by increasing total SCFAs which was related mainly to an increase in propionate (highest with EPA and vitamin K1 at 0.2x). Finally, we found that EPA and DHA increased gut barrier integrity with DHA at 1x and EPA at 5x (p < 0.05, respectively). In conclusion, our in vitro data further establish a role of PUFAs and vitamin K to modulate the gut microbiome with effects on the production of SCFAs and barrier integrity.


Assuntos
Ácidos Graxos Ômega-3 , Microbioma Gastrointestinal , Microbiota , Humanos , Vitamina K 1 , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Células CACO-2 , Vitamina K , Ácidos Graxos Insaturados , Ácidos Graxos
17.
Nutr Rev ; 82(3): 389-406, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37319363

RESUMO

Skeletal muscle plays a critical role throughout the aging process. People living with sarcopenia, a progressive and generalized loss of skeletal muscle mass and function, often experience diminished quality of life, which can be attributed to a long period of decline and disability. Therefore, it is important to identify modifiable factors that preserve skeletal muscle and promote successful aging (SA). In this review, SA was defined as (1) low cardiometabolic risk, (2) preservation of physical function, and (3) positive state of wellbeing, with nutrition as an integral component. Several studies identify nutrition, specifically high-quality protein (eg, containing all essential amino acids), and long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), as positive regulators of SA. Recently, an additive anabolic effect of protein and n-3 PUFAs has been identified in skeletal muscle of older adults. Evidence further suggests that the additive effect of protein and n-3 PUFAs may project beyond skeletal muscle anabolism and promote SA. The key mechanism(s) behind the enhanced effects of intake of protein and n-3 PUFAs needs to be defined. The first objective of this review is to evaluate skeletal muscle as a driver of cardiometabolic health, physical function, and wellbeing to promote SA. The second objective is to examine observational and interventional evidence of protein and n-3 PUFAs on skeletal muscle to promote SA. The final objective is to propose mechanisms by which combined optimal intake of high-quality protein and n-3 PUFAs likely play a key role in SA. Current evidence suggests that increased intake of protein above the Recommended Dietary Allowance and n-3 PUFAs above the Dietary Guidelines for Americans recommendations for late middle-aged and older adults is required to maintain skeletal muscle mass and to promote SA, potentially through the mechanistical target of rapamycin complex 1 (mTORC1).


Assuntos
Doenças Cardiovasculares , Ácidos Graxos Ômega-3 , Pessoa de Meia-Idade , Humanos , Idoso , Qualidade de Vida , Envelhecimento , Ácido Eicosapentaenoico/farmacologia , Ácidos Docosa-Hexaenoicos , Proteínas na Dieta
18.
J Nutr ; 154(1): 87-94, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37940004

RESUMO

BACKGROUND: Research suggests omega-3 polyunsaturated fatty acids (PUFAs) exert favorable effects on several biological processes involved in the development and progression of atherosclerotic cardiovascular disease (ASCVD). However, studies examining the relationship between omega-3 PUFAs and peripheral artery disease (PAD) are scarce. OBJECTIVES: We evaluated the associations between omega-3 PUFAs and incident PAD in a meta-analysis of the Multi-Ethnic Study of Atherosclerosis (MESA) and Atherosclerosis Risk in Communities (ARIC) study cohorts. METHODS: Omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were measured at baseline for all MESA (n = 6495) and Minnesota ARIC participants (n = 3612). Incident clinical PAD events (MESA n = 106; ARIC n = 149) identified primarily through ICD discharge codes were assessed through follow-up of each cohort. Associations between omega-3 PUFAs (EPA, DHA, and EPA+DHA) and incident PAD were modeled in MESA and ARIC as quartiles and continuously using Cox proportional hazards regression, respectively. A fixed-effects meta-analysis was conducted to evaluate associations in the 2 cohorts combined. RESULTS: In the fully adjusted model, in 10,107 participants, no significant associations were observed between EPA, DHA, or EPA+DHA, and incident PAD modeled as quartiles or continuously for either MESA or ARIC cohorts separately or in the meta-analysis after a follow-up of approximately 15 y. CONCLUSION: This study is consistent with previous literature indicating that the beneficial effects of omega-3 PUFAs on the markers of ASCVD may not translate to a clinically meaningful decrease in PAD risk.


Assuntos
Aterosclerose , Ácidos Graxos Ômega-3 , Doença Arterial Periférica , Humanos , Ácido Eicosapentaenoico/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Aterosclerose/prevenção & controle
19.
Curr Top Med Chem ; 24(1): 45-59, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37907485

RESUMO

Cancer ranks as the second leading cause of mortality in high-income countries, underscoring the critical need for effective therapeutic strategies. One prominent approach, chemotherapy, is widely employed for treating solid tumors. However, the significant adverse effects associated with chemotherapy, notably myeloablation and osteonecrosis, impart considerable challenges by compromising immune function and diminishing patients' quality of life. Furthermore, the emergence of chemotherapy resistance poses a formidable hurdle in achieving successful cancer treatment outcomes. In this context, the focus is on exploring alternative approaches to enhance the efficacy of cancer treatment and mitigate its adverse consequences. Among these approaches, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), two n-3 polyunsaturated fatty acids (PUFAs), have garnered substantial interest. These PUFAs exhibit the potential to influence membrane lipid composition and modulate critical gene expressions associated with cancer, such as Bcl-2, PI3K, NF-κB, and phosphorylated Akt, thereby potentially reducing cancer risk. Moreover, emerging evidence highlights their ability to augment chemotherapy efficacy, particularly in drug-resistant cancer cells. Importantly, both preclinical and clinical investigations have provided compelling evidence supporting the protective effects of n-3 PUFAs on healthy cells. Leveraging these findings, there has been growing attention on the exploration of n-3 PUFAs as adjuvants to chemotherapy. This strategic approach holds promise in mitigating the adverse effects linked to chemotherapy, notably myeloablation and osteonecrosis, while simultaneously enhancing its effectiveness in combating cancer. This comprehensive review delves into the multifaceted attributes of n-3 PUFAs, encompassing their cytotoxic properties, potential as chemopreventive agents, and their prospective role in ameliorating the adverse effects commonly associated with chemotherapy, with a particular emphasis on myeloablation and osteonecrosis. By elucidating the intricate interplay between n-3 PUFAs and cancer treatment paradigms, this review contributes to the expanding body of knowledge aimed at refining cancer therapeutic strategies and enhancing patient outcomes.


Assuntos
Ácidos Graxos Ômega-3 , Neoplasias , Osteonecrose , Humanos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Qualidade de Vida , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Neoplasias/tratamento farmacológico , Osteonecrose/tratamento farmacológico
20.
Med Sci Sports Exerc ; 56(3): 476-485, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051142

RESUMO

PURPOSE: Long-chain omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) may enhance recovery from exercise-induced muscle damage (EIMD). However, it is unclear if the effects are due to EPA, DHA, or both. The purpose of this investigation was to examine the effect of EPA + DHA, EPA, and DHA compared with placebo (PL) on muscular recovery. METHODS: Thirty males were randomized to 4 g·d -1 EPA + DHA ( n = 8), EPA ( n = 8), DHA ( n = 7), or PL ( n = 7). After 7-wk supplementation, a downhill running (20 min, 70% V̇O 2max , -16% gradient) plus jumping lunges (5 × 20 reps, 2-min rest intervals) muscle damage protocol was performed. Indices of muscle damage, soreness, muscle function, and inflammation were measured at baseline and throughout recovery. The omega-3 index (O3i; %EPA + %DHA in erythrocytes) was used to track tissue EPA and DHA status. RESULTS: After supplementation, the O3i was significantly higher than PL in all experimental groups ( P < 0.001). Leg press performance was lower in the PL group at 24 h compared with EPA ( P = 0 .019) and at 72 h for EPA ( P = 0.004) and DHA ( P = 0 .046). Compared with PL, muscle soreness was lower in the DHA ( P = 0.015) and EPA ( P = 0.027) groups at 48 h. Albeit nonsignificant, EPA + DHA tended to attenuate muscle soreness ( d = 1.37) and leg strength decrements ( d = 0.75) compared with PL. Jump performance and power metrics improved more rapidly in the EPA and DHA groups (time effects: P < 0.001). Measures of inflammation, range of motion, and muscle swelling were similar between groups ( P > 0.05). CONCLUSIONS: Compared with PL, 4 g·d -1 of EPA or DHA for 52 d improves certain aspects of recovery from EIMD. EPA + DHA did not clearly enhance recovery. Equivalent dosing of EPA + DHA may blunt the performance effects observed in EPA or DHA alone.


Assuntos
Ácido Eicosapentaenoico , Ácidos Graxos Ômega-3 , Humanos , Masculino , Ácido Eicosapentaenoico/farmacologia , Ácidos Docosa-Hexaenoicos , Mialgia , Suplementos Nutricionais , Ácidos Graxos Ômega-3/farmacologia , Inflamação , Músculos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...